fon2

Стробоскоп для зажигания своими руками.

Момент зажигания горючей смеси, то есть наступление того мгновения, когда между электродами свечи проскакивает искра, во многом определяет правильность работы двигателя автомашины. Более того. Исследования ученых (да и опыт практиков) свидетельствуют, что точная регулировка системы зажигания не только продлевает жизнь двигателю, но и в значительной мере способствует экономному расходованию топлива.
Менее токсичными становятся продукты выхлопа, а это и для экологии - фактор немаловажный.
Неудивительно, что для правильной установки и юстировки системы зажигания профессионалы оснащены сейчас всем необходимым. А про автолюбителей у нас, как водится, забыли. Как же им, беднягам, отрегулировать столь важную систему в домашних условиях?

Предлагаю воспользоваться для успешного выполнения автолюбителями ответственной операции самодельным стробоскопом, выполненным на базе широко распространенного блока зажигания на полупроводниковых приборах и импульсной газоразрядной лампы ИФК-120 (от фото- вспышки). Как видно из иллюстраций, техническое решение здесь, можно сказать, элементарно простое. Но вот результат...
Стробоскоп подключается к бортовой сети. А расположенный на конце входного проводника зажим типа «крокодил» закрепляют на изоляции высоковольтного провода, идущего к свече первого цилиндра.
Запустив двигатель и прогрев его, устанавливают число оборотов, примерно равное 1000-1500. Затем направляют вспышки лампы ИФК-120 на заводские метки, нанесенные на шкиве коленвала и на корпусе привода механизма газораспределения. Причем последние для лучшей видимости целесообразно заранее подновить свежей белой краской. И вот срабатывает стробоскопический эффект. Словно на дискотеке, все вдруг как бы обездвиживается.
Если метка на шкиве коленчатого вала "замирает" против средней (из имеющихся трех) на корпусе, значит - все в порядке. Угол установки зажигания у двигателя автомобиля тот, который и нужен.
В случае, когда метка на шкиве смещается вперед по ходу вращения шкива, имеет место факт опережения. Если назад - отставания. Необходимой же установки зажигания добиваются поворотом распределителя, выбирая "лишний" угол. Теперь - конкретно о конструкции самодельного стробоскопа.

Выполнен стробоскоп ( рис.1) по схеме, состояшей из преобразователя на транзисторе VТ1 с относящимися к этому каскаду деталями; ключа - на тринисторе VS1; накопительных конденсаторов С2 и С3; усилителя импульсов с емкостным датчиком С4 (зажим типа "крокодил", устанавливаемый на изоляции высоковольтного провода, идущего к свече), а также импульсной газоразрядной лампы ИФК-120 с трансформатором Т2.
Работа схемы стробоскопа протекает следующим образом. С подключением стробоскопа к бортовой сети автомобиля электропитание 12 В подается сразу же на усилитель импульсов и на генератор, который преобразует напряжение постоянного тока в импульсы 380-450 В.
Обмотка III импульсного трансформатора Т1 - повышающая. Индуцированное в ней высоковольтное напряжение поступает на выпрямитель (VD5 и VD6, конденсаторы С2 и С3) для питания HL1 и VS1 соответственно, пребывающих до поры до времени в своеобразном "ждущем" режиме.
stroboskop1 При наложении емкостного датчика С4 на высоковольтный провод, по которому импульсное напряжение поступает к свече для воспламенения горючей смеси, в зажиме типа "крокодил" наводится Uвх. Поступая на вход импульсного усилителя, "пички" отрицательной (стоят диоды VD8 - VD9) полярности многократно возрастают по амплитуде. А с R7 снимаются импульсы положительной полярности, которые через диод VD10 подводятся к управляющему электроду тринистора VS1. Последний срабатывает, вызывая разряд через него конденсатора СЗ.
Через первичную трансформатора Т2 потечет ток, индуцируя во вторичной обмотке импульс напряжения. Будучи подведенным к управляющему электроду газоразрядной лампы, находящемуся (такова ее конструктивная особенность) на внешней стенке баллона, этот импульс вызывает "поджиг" ИФК-120. Известный, наверное, каждому фотолюбителю источник оптического излучения дает яркую вспышку. Следуя друг за другом с частотой, определяемой системой зажигания горючей смеси, и будучи направленным на движущиеся детали, такие вспышки и вызывают стробоскопический эффект.
Теперь - несколько слов об особенностях изготовления конструкции стробоскопа. Как уже подчеркивалось ранее, собран стробоскоп из широко распространенных деталей и доступен для самостоятельного изготовления практически любому, даже начинающему, радиолюбителю. Более того, в нем можно использовать готовый блок зажигания на полупроводниковых приборах, добавив лишь диод VD10, конденсатор С3 с трансформатором Т2, усилитель, выполненный на VТ2 и VТЗ, а также импульсную лампу HL1.
Но лучше всю схему стробоскопа собрать самому.
Так как значительная часть монтажа стробоскопа (рис.2) располагается вне печатной платы, последнюю приводить в материале нецелесообразно. Тем более что некоторые, несомненно воспользуются уже готовыми, имеющимися у них под рукой, узлами.

stroboskop2

Детали

Транзисторы:
VT1 - КП103Ж,
VT2 - МП26,
VT3 - П213.
Стабилитрон VD1 - Д817Б.
Тринистор VS1 - КУ202Н.
Диоды:
VD2...VD6 - Д337Б,
VD7...VD10 - КД503.
С4 - емкостный датчик (на базе зажима типа "крокодил").
Все резисторы - типа МЛТ.
Конденсатор С1 электролитический, рассчитанный на 15 В. Остальные (за исключением, естественно, емкостного датчика) - типа МГБ 1,0Х 400 В.
Трансформатор Т1 намотан на Ш-образном сердечнике сечением 200 мм2. Сборка его выполнена встык, с зазором 0,2 мм.
Первая обмотка содержит 45 витков провода ПЭВ-2 0,7. Причем у второй - 65 витков (ПЭВ-2 0,2). Зато третья уже содержит 380 витков ПЭВ-2 0,15.
Импульсный трансформатор Т2 выполнен на кольцевом феррите К10Х 6Х 3 марки 2000 НМ.
Первичная обмотка здесь содержит всего 5 витков провода ПЭЛШО-0,41. У вторичной же - 200 витков ПЭЛШО-0,1.
ИФК-120 располагается в корпусе от "фабричной" лампы-вспышки (с отражателем, рассеивателем и крепежными элементами). Соединяется этот импульсный газоразрядный источник оптического излучения со всей конструкцией 0,7-м отрезком трехжильного кабеля, рассчитанного на рабочее напряжение до 500 В.

Собранный строго по схеме стробоскоп, как правило, особой наладки не требует. О работоспособности генератора можно судить по характерному "писку", который он издает сразу после подачи на него питания. При отсутствии "писка" следует проверить правильность подсоединения обмоток I и II трансформатора Т1, а также исправность VТ1. Если транзистор окажется всетаки исправным, необходимо поменять местами концы у одной из вышеназванных обмоток.
На выходе генератора должно быть от 380 до 450 В. При несоответствии подобрать стабилитрон Д817 с более подходящими параметрами для работы в составе схемы стробоскопа. Если вдруг окажется, что напряжение на выходе генератора, несмотря ни на что, занижено и не поднимается более 150 В, следует поменять местами концы обмотки III.
Затем при работающем генераторе и наличии напряжения на конденсаторах С2 и С3 прикоснитесь пальцем к зажиму на входе усилителя. Фото- вспышка должна ярко вспыхнуть. Если же этого не случилось, проверяют исправность усилителя и трансформатора Т2. Причем у последнего целесообразным оказывается подчас просто-напросто поменять между собой концы одной из обмоток, тогда начинает вся схема стробоскопа работать исправно.

Л.Теремков

МК 1994/02

<< Предыдущая Cледующая >>

Вверх

radionet